PHILOSOPHY OF SCIENCE IN THE ERA OF BIG DATA AND ARTIFICIAL INTELLIGENCE: CHALLENGES AND OPPORTUNITIES
DOI:
https://doi.org/10.54622/aijis.v1i1.271Keywords:
Philosophy of Science, Big Data, Artificial IntelligenceAbstract
This research aims to examine the challenges and opportunities faced by philosophy of science in the era of Big Data and Artificial Intelligence (AI). This era is characterized by rapid developments in the collection, storage and analysis of large and complex data, as well as advances in artificial intelligence technology that allows machines to learn and make decisions automatically. This research uses a qualitative approach with a literature study method. The main challenge faced by the philosophy of science is to overcome the complexity and infinite dimensions of the data generated. Big Data provides the ability to analyze patterns and trends that were previously difficult to detect, but on the other hand it also presents challenges in understanding the position of philosophy towards this infinite quantity and diversity of data. Philosophy of science needs to consider concepts such as truth, reliability and validity in the context of probabilistic and uncertain data. In addition, artificial intelligence also raises profound philosophical questions. Philosophy of science needs to address questions of ethics and responsibility in the use of artificial intelligence. However, the era of Big Data and AI also provides opportunities for philosophy of science. Philosophy of science can develop new methodologies to understand complex phenomena in various disciplines. It can leverage artificial intelligence to efficiently analyze data and gain deep insights. In addition, philosophy of science can play an important role in developing ethical frameworks for the use of Big Data and AI. In conclusion, the era of Big Data and Artificial Intelligence poses significant challenges and opportunities for philosophy of science in developing deep understanding and producing necessary ethical guidance
References
Aditya, M. A., Mulyana, R. D., Eka, I. P., & Widianto, S. R. (2020). Penggabungan Teknologi Untuk Analisa Data Berbasis Data Science. 1(1), 51–56.
Adlini, M. N., Dinda, A. H., Yulinda, S., Chotimah, O., & Merliyana, S. J. (2022). Metode penelitian kualitatif studi pustaka. Edumaspul: Jurnal Pendidikan, 6(1), 974–980.
Agrawal, A., Gans, J. S., & Goldfarb, A. (2019). Exploring the impact of artificial intelligence: Prediction versus judgment. Information Economics and Policy, 47, 1–6.
Alfansyur, A., & Mariyani, M. (2020). Seni mengelola data: Penerapan triangulasi teknik, sumber dan waktu pada penelitian pendidikan sosial. Historis: Jurnal Kajian, Penelitian Dan Pengembangan Pendidikan Sejarah, 5(2), 146–150.
Alghafiqi, B., & Munajat, E. (2022). IMPACT OF ARTIFICIAL INTELLIGENCE TECHNOLOGY ON ACCOUNTING PROFESSION DAMPAK TEKNOLOGI ARTIFICIAL INTELLIGENCE PADA PROFESI AKUNTANSI.
Alisa Q. (2023). Teori Keadilan Menurut Para Filsuf. Gramedia.com. https://www.gramedia.com/literasi/teori-keadilan/
Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artificial intelligence. MIS Quarterly, 45(3).
Betoncu, O., & Ozdamli, F. (2019). The Disease of 21 st Century: Digital Disease. TEM Journal, 8(2).
Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: Impact on firm performance. Management Decision, 57(8), 1923–1936.
Fitrianti, L. (2023). PENGUATAN EVALUASI PEMBELAJARAN BAGI GURU PEMULA. Al-Ihda’: Jurnal Pendidikan Dan Pemikiran, 18(1), 838–849.
Galetsi, P., Katsaliaki, K., & Kumar, S. (2019). Values, challenges and future directions of big data analytics in healthcare: A systematic review. Social Science & Medicine, 241, 112533.
Good Stats. (2023, June 30). Menilik Perkembangan Pengguna Internet 2013-2023. Good Stats. https://data.goodstats.id/statistic/agneszefanyayonatan/menilik-perkembangan-pengguna-internet-2013-2023-uV8Ws
Klingenberg, C. O., Borges, M. A. V., & Antunes Jr, J. A. V. (2021). Industry 4.0 as a data-driven paradigm: A systematic literature review on technologies. Journal of Manufacturing Technology Management, 32(3), 570–592.
Kusumasanthi, D., Wiguna, I. B. A. A., & Puspawati, S. (2023). EKSISTENSI FILSAFAT KOMUNIKASI DI ERA DIGITAL. Samvada: Jurnal Riset Komunikasi, Media, Dan Public Relation, 2(1), 22–37.
Manongga, D., Rahardja, U., Sembiring, I., Lutfiani, N., & Yadila, A. B. (2022). Dampak Kecerdasan Buatan Bagi Pendidikan. ADI Bisnis Digital Interdisiplin Jurnal, 3(2), 41–55.
Marzuki, I. (2021). Filsafat Ilmu di Era Milenial [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/btak4
Muhammad Wali, S., Efitra, S., Kom, M., Sudipa, I. G. I., Kom, S., Heryani, A., Sos, S., Hendriyani, C., Rakhmadi Rahman, S., & Kom, M. (2023). Penerapan & Implementasi Big Data di Berbagai Sektor (Pembangunan Berkelanjutan Era Industri 4.0 dan Society 5.0). PT. Sonpedia Publishing Indonesia.
Nugraha, M. S., Maskar, D. K., & Rohayani, A. (2023). Konsep Etika Islam Yang Relevan Dengan Teknologi Digital. 1(1), 106–123.
Nuryanto, A. (2020). Tantangan Administrasi Publik di Dunia Artificial Intelligence dan Bot. Jejaring Administrasi Publik, 12(2), 139–147.
Octaviani, R., & Sutriani, E. (2019). Analisis data dan pengecekan keabsahan data.
Padli, Ms., & Mustofa, Ml. (2021). Kebenaran Dalam Perspektif Filsafat Serta Aktualisasinya Dalam Men-Screening Berita. Jurnal Filsafat Indonesia, 4(1), 78–88.
Peterson, J. C., & Kurniawan, Y. (2023). Pengaruh Dari Penerapan Big Data, Penerapan Cloud Computing, dan Penerapan Artificial Intelligence Pada Kinerja Profesi Akuntan Dalam Menghadapi Era Revolusi Industri 4.0 di PT. Perada Swara Productions. Journal of Students ‘Research in Computer Science, 4(1), 93–104.
Pratama, A. S., Sari, S. M., Hj, M. F., Badwi, M., & Anshori, M. I. (2023). Pengaruh Artificial Intelligence, Big Data Dan Otomatisasi Terhadap Kinerja SDM Di Era Digital. Jurnal Publikasi Ilmu Manajemen, 2(4), 108–123.
Sanjaya, B. A., & Sulistyo, S. (2015). BIG DATA: INKONSISTENSI DATA DAN SOLUSINYA.
Sari, I. N., Lestari, L. P., Kusuma, D. W., Mafulah, S., Brata, D. P. N., Iffah, J. D. N., Widiatsih, A., Utomo, E. S., Maghfur, I., & Sofiyana, M. S. (2022). Metode penelitian kualitatif. Unisma Press.
Savitri, A. (2019). Revolusi industri 4.0: Mengubah tantangan menjadi peluang di era disrupsi 4.0. Penerbit Genesis.
Setiawan, A., & Luthfiyani, U. K. (2023). Penggunaan ChatGPT Untuk Pendidikan di Era Education 4.0: Usulan Inovasi Meningkatkan Keterampilan Menulis. JURNAL PETISI (Pendidikan Teknologi Informasi), 4(1), 49–58.
Sri Saraswati Wisjnu, W., Ismunandar, I., & Anto S, N. (2020). Strategi nasional kecerdasan artifisial Indonesia 2020-2045.
Sugiyono. (2022). Metode Penelitian Kuantitatif Kualitatif dan R&D (Cetakan Ke-4). ALFABETA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M Sholih Salimul Uqba, Istiadah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially

